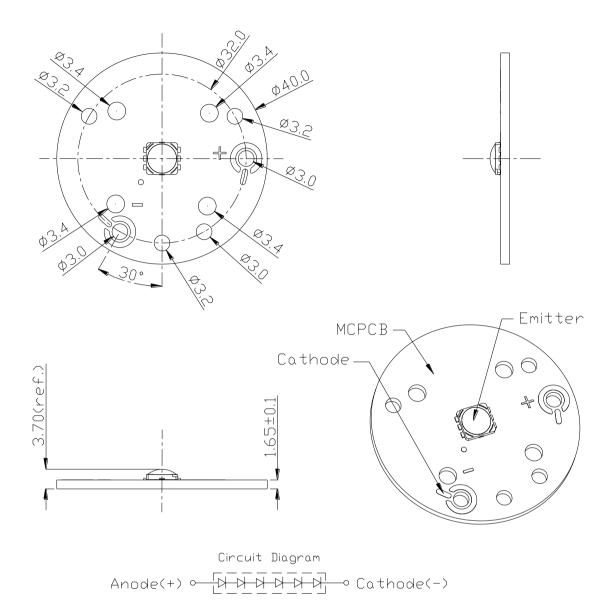


ProLight PF6M-15LxP-6SC 15W White/ Warm White Power LED Technical Datasheet Version: 2.3

Features

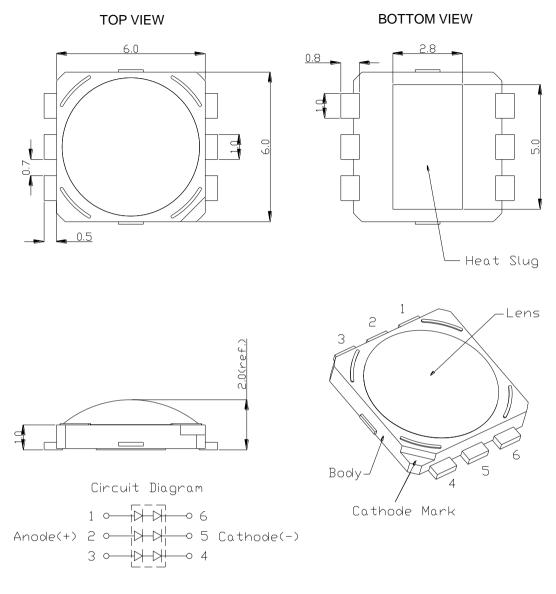

- High flux per LED
- RoHS compliant
- Good color uniformity
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

ProLight 1

Module Mechanical Dimensions



Notes:

- 1. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.
- 5. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Emitter Mechanical Dimensions

Notes:

- 1. The cathode side of the device is denoted by the chamfer on the part body.
- 2. Electrical insulation between the case and the board is required --- slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- 6. Please do not bend the leads of LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Radiation	Color	Part Number	Lumious Flux Φ_{v} (Im)		
Pattern	n Color Module		Minimum	Typical	
Lambertian	White Warm White	PF6M-15LWP-6SC PF6M-15LVP-6SC	1080 1040	1270 1220	

Flux Characteristics at 700mA, T_J = 25°C

• ProLight maintains a tolerance of ± 10% on flux and power measurements.

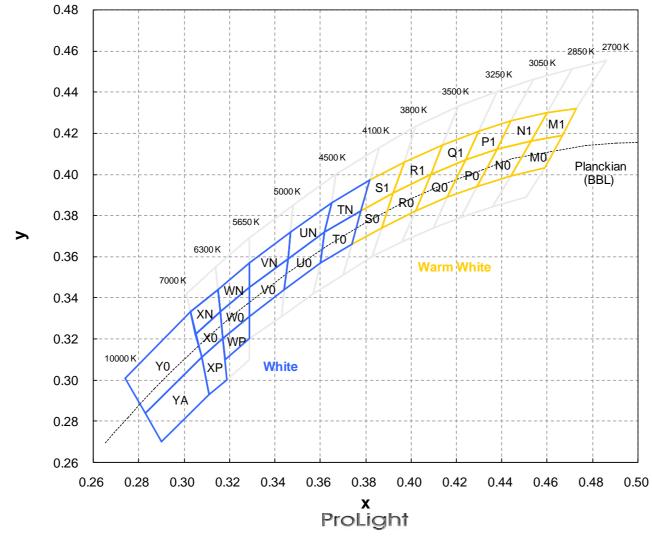
• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 700mA, $T_J = 25^{\circ}C$

Color	F	orward Voltage V _F (Thermal Resistance	
COIDI	Min.	Тур.	Max.	Junction to Board (°C/ W)
White	18.6	21.6	25.8	2.4
Warm White	18.6	21.6	25.8	2.4

• ProLight maintains a tolerance of ± 0.1 for Voltage measurements.

Optical Characteristics at 700mA, T_J = 25°C


	Co	lor Temperature C	Total included Angle (degrees)	Viewing Angle (degrees)	
Color	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
White Warm White	4100K 2700K	5500K 3300K	10000K 4100K	160 160	140 140

• ProLight maintains a tolerance of ± 5% for CCT measurements.

Absolute Maximum Ratings

Parameter	White/Warm White
DC Forward Current (mA)	700
Peak Pulsed Forward Current (mA)	1000 (less than 1/10 duty cycle@1KHz)
Average Forward Current (mA)	700
ESD Sensitivity	> ±500V
(HBM per MIL-STD-883E Method 3015.7	
LED Junction Temperature ($^\circ\!\!\mathbb{C}$)	120°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 85°C
Storage Temperature	-40°C - 120°C
Reverse Voltage	Not designed to be driven in reverse bias

Color Bin

White and Warm White Binning Structure Graphical Representation

6

Color Bins

White Bin Structure

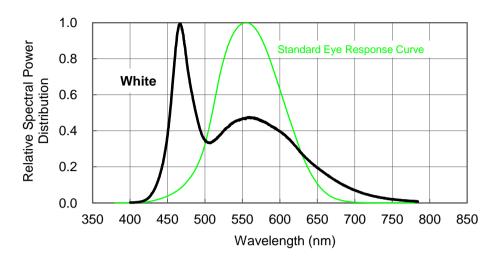
Bin Code	x	у	Тур. ССТ (К)	Bin Code	x	у	Тур. ССТ (К)
ТО	0.378	0.382	4300	WN	0.329	0.345	5970
	0.374	0.366			0.316	0.333	
	0.360	0.357	4000		0.315	0.344	
	0.362	0.372			0.329	0.357	
	0.382	0.397			0.329	0.331	
TN	0.378	0.382	4300	WP	0.329	0.320	5970
	0.362	0.372	4000		0.318	0.310	0070
	0.365	0.386			0.317	0.320	
	0.362	0.372			0.308	0.311	
U0	0.360	0.357	4750	X0	0.305	0.322	6650
00	0.344	0.344	4750	70	0.316	0.333	
	0.346	0.359			0.317	0.320	
	0.365	0.386	4750	4750 XN	0.305	0.322	6650
UN	0.362	0.372			0.303	0.333	
	0.346	0.359			0.315	0.344	
	0.347	0.372			0.316	0.333	
	0.329	0.331	5320	5320 XP	0.308	0.311	6650
V0	0.329	0.345			0.317	0.320	
VO	0.346	0.359			0.319	0.300	0000
	0.344	0.344			0.311	0.293	
	0.329	0.345			0.308	0.311	
VN	0.329	0.357	5320	Y0	0.283	0.284	8000
VIN	0.347	0.372	5520	10 10	0.274	0.301	0000
	0.346	0.359			0.303	0.333	
W0	0.329	0.345	5970		0.308	0.311	8000
	0.329	0.331		5970 YA	0.311	0.293	
VVO	0.317	0.320			0.290	0.270	0000
	0.316	0.333			0.283	0.284	

• Tolerance on each color bin (x, y) is ± 0.01

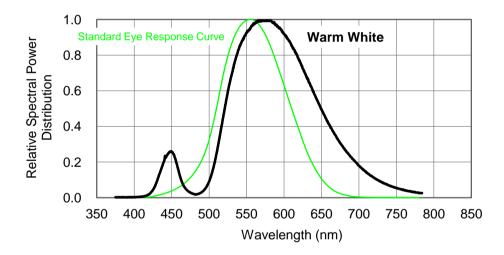
Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bins

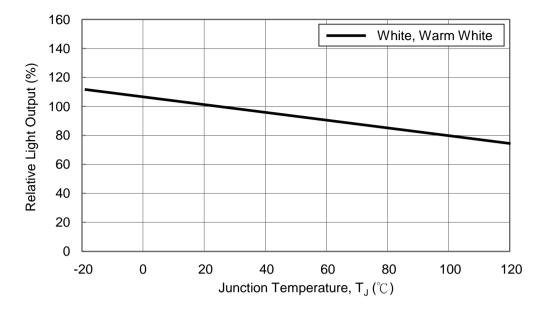
Warm White Bin Structure


0.453 0.416			У	(K)
0.100 0.110		0.409	0.400	
M0 0.444 0.399 27	70 Q0	0.402	0.382	3370
0.459 0.403		0.416	0.389	3370
0.467 0.419		0.424	0.407	
0.460 0.430		0.414	0.414	
M1 0.453 0.416 27	70 Q1	0.409	0.400	3370
0.467 0.419		0.424	0.407	3370
0.473 0.432		0.430	0.421	
0.438 0.412		0.392	0.391	
N0 0.429 0.394 29	50 R0	0.387	0.374	3650
0.444 0.399	50 KU	0.402	0.382	3030
0.453 0.416		0.409	0.400	
0.444 0.426		0.414	0.414	
N1 0.438 0.412 29	2950 R1	0.409	0.400	3650
0.453 0.416		0.392	0.391	3030
0.460 0.430		0.397	0.406	
0.424 0.407		0.392	0.391	
P0 0.416 0.389 31	150 S0	0.387	0.374	3950
0.429 0.394	50 50	0.374	0.366	3930
0.438 0.412		0.378	0.382	
0.430 0.421		0.397	0.406	
P1 0.424 0.407 31	3150 S1	0.392	0.391	3950
0.438 0.412	JU JI	0.378	0.382	3900
0.444 0.426		0.382	0.397	

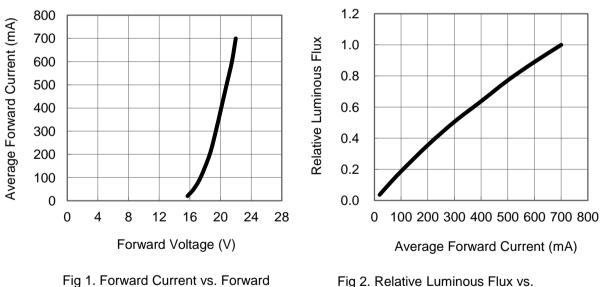
• Tolerance on each color bin (x , y) is ± 0.01


Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Spectrum, T_J = 25°C

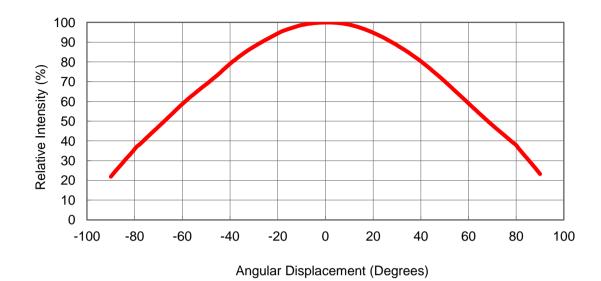

1. White

2. Warm White



Light Output Characteristics

Relative Light Output vs. Junction Temperature at 700mA


Forward Current Characteristics, T_J = 25°C

Voltage for White, Warm White.

Fig 2. Relative Luminous Flux vs. Forward Current for White, Warm White at Tj=25℃ maintained.

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Operating Life (RTOL) Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Non-operating Thermal Shock (TMSK)	-40°C to 120°C, 20 min. dwell, <20 sec. transfer	200 cycles	Note 2

Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
		Min.	Max.	
Forward Voltage (V _F)	I _F = max DC	-	Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	-	
Reverse Current (I _R)	$V_R = 5V$	-	50 µA	

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

Precaution for Use

- The modules light output are intense enough to cause injury to human eyes if viewed directly. Precautions must be taken to avoid looking directly at the modules with unprotected eyes.
- The modules are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the modules. Non-compliance with ESD protection
 measures may lead to damage or destruction of the product.
- Chemical solvents or cleaning agents must not be used to clean the modules. Mechanical stress on the Emitters must be avoided. It is best to use a soft brush, damp cloth or low-pressure compressed air.
- The products should be stored away from direct light in dry location.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Silicone Lens LEDs

Notes for handling of silicone lens LEDs

- Please do not use a force of over 3kgf impact or pressure on the silicone lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the silicone lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the silicone lens must be prevented.
- Please do not mold over the silicone lens with another resin. (epoxy, urethane, etc)

ProLight 13