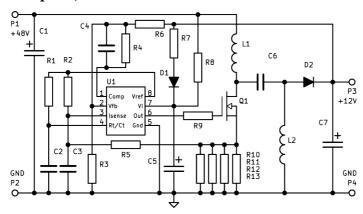
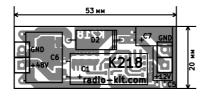
# K-218 PoE DC-DC конвертер питание через стандартную витую пару в сети Ethernet


Power over Ethernet (PoE) - технология, позволяющая передавать удалённому устройству электрическую энергию вместе с данными через стандартную витую пару в сети Ethernet. Данная технология предназначается для IP-телефонии, точек доступа беспроводных сетей, IP-камер, сетевых концентраторов, IP-метеостанций и других устройств, к которым нежелательно или невозможно проводить отдельный электрический кабель.

По нагрузочной способности устройство соответствует PoE-класс 1 — до 3,84 Вт, и выдерживает короткое замыкание по выходу не только при запуске, но и во время работы, что положительно сказывается на надежности устройства в целом.


Схема может работать как на понижение так и на повышение напряжения. Напряжение запуска преобразователя 20 В. После этого работоспособность схемы сохраняется при снижении входного напряжения ниже 12 В с пропорциональным снижением выходной мощности. Эта особенность хорошо согласуется с большим падением напряжения на длинных питающих кабелях.

## Технические характеристики:

### Схема принципиальная:



## Схема расположения элементов:



Рекомендованное подключение:

| Tenomengobulinoe nogistio tenite. |                                  |                                                 |
|-----------------------------------|----------------------------------|-------------------------------------------------|
| PINS on Switch                    | Цвет проводника<br>(раскладка В) | 10/100 (метод В)<br>использование резервных пар |
|                                   |                                  | Данные Питание                                  |
| Pin 1                             | бел./оранж.                      | RX+                                             |
| Pin 2                             | оранж.                           | RX-                                             |
| Pin 3                             | бел./зел.                        | TX+                                             |
| Pin 4                             | син.                             | DC+                                             |
| Pin 5                             | бел./син.                        | DC+                                             |
| Pin 6                             | зел.                             | TX-                                             |
| Pin 7                             | бел./кор.                        | DC-                                             |
| Pin 8                             | кор.                             | DC-                                             |

#### Общее описание:

Схема реализована на основе интегральной микросхемы которая является ШИМдрайвером. ИМС включена по доработанной типовой схеме.

Пульсации входного напряжения сглаживаются емкостью С1. Резистор R8 обеспечивает питание ИМС в период запуска преобразователя, а цепь из резистора R7 и диода D1 в свою очередь питают ИМС в рабочем режиме. Питание ИМС сглаживается емкостью C5.

Обратная связь (Loop Feedback), состоящая из делителя R6R3 и корректирующей цепочки R4C4, обеспечивает стабилизацию выходного напряжения.

Сигнал с токового шунта R10...R13, проходящий через фильтр R5C3, определяет время отключения силового ключа Q1 в каждом такте. R2 задает постоянное смещение, тем самым увеличивает КПД путем уменьшения порогового напряжения до уровня 0,5 В.

Элементы R1, C1 составляют времязадающую цепочку для внутреннего генератора импульсов ИМС с частотой около 100 к $\Gamma$ ц.

Резистор R9 — токоограничительный.

Силовые элементы L1, C6, L2, D2, C7 совместно с ключем Q1 и шунтом R10...R13 образуют несимметричный преобразователь постоянного напряжения на катушках индуктивности (SEPIC — single-ended primary inductor converter).

Настроить выходное напряжение в пределах от 12 до 25 B, можно заменой резистора R6.

Выходную мощность и диапазон входного напряжения можно увеличить заменив силовые элементы на более высоковольтные или рассчитанные на больший ток.